How to catch a wave packet...

Vittorio Giovannetti* and Daniel Burgarth[†]

*SNS Pisa, [†]UCL London

Dresden, 06/08/2005

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Introduction

- Connecting quantum computers
- Dispersion

2 Catching the information

- Classical case
- Quantum case
- Convergence

イロト イポト イヨト イヨト

Connecting quantum computers Dispersion

Transfer of quantum information through permanently coupled systems

- How can we connect two parts of a quantum computer?
- Classical wires cannot be used for unknown quantum states

- Converting stationary solid-state qubits to flying qubits (photons, electrons) may be difficult and not worthy for short distances.
- A permanently coupled system of qubits can be used to bridge regions of high control by regions of low or even without control

Connecting quantum computers Dispersion

Transfer of quantum information through permanently coupled systems

- How can we connect two parts of a quantum computer?
- Classical wires cannot be used for unknown quantum states

- Converting stationary solid-state qubits to flying qubits (photons, electrons) may be difficult and not worthy for short distances.
- A permanently coupled system of qubits can be used to bridge regions of high control by regions of low or even without control

Connecting quantum computers Dispersion

Transfer of quantum information through permanently coupled systems

- How can we connect two parts of a quantum computer?
- Classical wires cannot be used for unknown quantum states

・ 同 ト ・ ヨ ト ・ ヨ ト

- Converting stationary solid-state qubits to flying qubits (photons, electrons) may be difficult and not worthy for short distances.
- A permanently coupled system of qubits can be used to bridge regions of high control by regions of low or even without control

Connecting quantum computers Dispersion

Transfer of quantum information through permanently coupled systems

- How can we connect two parts of a quantum computer?
- Classical wires cannot be used for unknown quantum states

< 3 > 4 3 >

- Converting stationary solid-state qubits to flying qubits (photons, electrons) may be difficult and not worthy for short distances.
- A permanently coupled system of qubits can be used to bridge regions of high control by regions of low or even without control

Connecting quantum computers Dispersion

The first proposal (S. Bose, PRL 2003)

 Linear chain of spin-1/2 particles equally coupled by Heisenberg interaction, i.e.

$$H = -J \sum_{n=1}^{N-1} (X_n X_{n+1} + Y_n Y_{n+1} + Z_n Z_{n+1})$$

< ロト < 同 ト < 三 ト < 三

- Encode unknown state $|\psi_A\rangle$ in the first spin, leave the rest in the ground state $|00...00\rangle$.
- The excitation is forming a *spin wave* that travels along the chain and finally reaches Bob. BUT...

Connecting quantum computers Dispersion

The first proposal (S. Bose, PRL 2003)

 Linear chain of spin-1/2 particles equally coupled by Heisenberg interaction, i.e.

$$H = -J \sum_{n=1}^{N-1} (X_n X_{n+1} + Y_n Y_{n+1} + Z_n Z_{n+1})^{-1}$$

- Encode unknown state |ψ_A⟩ in the first spin, leave the rest in the ground state |00...00⟩.
- The excitation is forming a *spin wave* that travels along the chain and finally reaches Bob. BUT...

Connecting quantum computers Dispersion

The first proposal (S. Bose, PRL 2003)

 Linear chain of spin-1/2 particles equally coupled by Heisenberg interaction, i.e.

$$H = -J \sum_{n=1}^{N-1} (X_n X_{n+1} + Y_n Y_{n+1} + Z_n Z_{n+1})^{-1}$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Encode unknown state |ψ_A⟩ in the first spin, leave the rest in the ground state |00...00⟩.
- The excitation is forming a spin wave that travels along the chain and finally reaches Bob. BUT...

Connecting quantum computers Dispersion

The first proposal (S. Bose, PRL 2003)

• Linear chain of spin-1/2 particles equally coupled by Heisenberg interaction, i.e.

$$H = -J \sum_{n=1}^{N-1} (X_n X_{n+1} + Y_n Y_{n+1} + Z_n Z_{n+1})$$

< ロト < 同 ト < 三 ト < 三

- Encode unknown state |ψ_A⟩ in the first spin, leave the rest in the ground state |00...00⟩.
- The excitation is forming a *spin wave* that travels along the chain and finally reaches Bob. BUT...

Introduction Catching the information

Conclusion

Connecting quantum computers Dispersion

Dispersion

- Even without external noise, the fidelity $|\langle \psi_A | \rho_B | \psi_A \rangle|$ is not perfect!!!
- DISPERSION:

Fidelity decreases as $\frac{1}{(\text{LENGTH})^{2/3}}$

- Therefore this scheme is only feasible for very short chains.
- Dispersion is a general problem for quantum information transfer in permanently coupled systems

<ロ> <四> <四> <日> <日> <日> <日</p>

Introduction Catching the information

Conclusion

Connecting quantum computers Dispersion

Dispersion

- Even without external noise, the fidelity $|\langle \psi_A | \rho_B | \psi_A \rangle|$ is not perfect!!!
- DISPERSION:

Fidelity decreases as $\frac{1}{(\text{LENGTH})^{2/3}}$

- Therefore this scheme is only feasible for very short chains.
- Dispersion is a *general* problem for quantum information transfer in permanently coupled systems

イロト イポト イヨト イヨト

Connecting quantum computers Dispersion

Dispersion

- Even without 0.8 external noise, the fidelity $|\langle \psi_A | \rho_B | \psi_A \rangle|$ 0.6 ²robability is not perfect!!! 0.4 DISPERSION: **Fidelity decreases** 0.2 as $\frac{1}{(\text{LENGTH})^{2/3}}$ 0 20 0 10 30 40 50 Position
- Therefore this scheme is only feasible for very short chains.
- Dispersion is a *general* problem for quantum information transfer in permanently coupled systems

Connecting quantum computers Dispersion

Dispersion

- Therefore this scheme is only feasible for very short chains.
- Dispersion is a *general* problem for quantum information transfer in permanently coupled systems

Connecting quantum computers Dispersion

Dispersion

- Even without 0.8 external noise, the fidelity $|\langle \psi_A | \rho_B | \psi_A \rangle|$ 0.6 ²robability is not perfect!!! 0.4 DISPERSION: **Fidelity decreases** 0.2 as $\frac{1}{(\text{LENGTH})^{2/3}}$ 10 20 30 40 Position
- Therefore this scheme is only feasible for very short chains.
- Dispersion is a *general* problem for quantum information transfer in permanently coupled systems

Connecting quantum computers Dispersion

Dispersion

- Even without 0.8 external noise, the fidelity $|\langle \psi_A | \rho_B | \psi_A \rangle|$ 0.6 ²robability is not perfect!!! 0.4 DISPERSION: **Fidelity decreases** 0.2 as $\frac{1}{(\text{LENGTH})^{2/3}}$ 10 20 30 40 Position
- Therefore this scheme is only feasible for very short chains.
- Dispersion is a *general* problem for quantum information transfer in permanently coupled systems

Connecting quantum computers Dispersion

Dispersion

- Therefore this scheme is only feasible for very short chains.
- Dispersion is a *general* problem for quantum information transfer in permanently coupled systems

Classical case Quantum case Convergence

Catching the dispersed information

- In principal one can overcome dispersion by increasing the control along the channel, by choosing specific hamiltonians or by encoding/decoding the information in a more complicated way
- Idea here: make use of the resources of the receiver to increase the fidelity of the transfer
- In particular, we will use the *memory* and *processor* of the receiving party to gradually store the wave packet and to decode it by a unitary transformation
- Let us start with an arbitrary graph. Later we will come back to the linear chain

イロト イポト イヨト イヨト

Classical case Quantum case Convergence

Catching the dispersed information

- In principal one can overcome dispersion by increasing the control along the channel, by choosing specific hamiltonians or by encoding/decoding the information in a more complicated way
- Idea here: make use of the resources of the receiver to increase the fidelity of the transfer
- In particular, we will use the *memory* and *processor* of the receiving party to gradually store the wave packet and to decode it by a unitary transformation
- Let us start with an arbitrary graph. Later we will come back to the linear chain

イロト イポト イヨト イヨト

Classical case Quantum case Convergence

Catching the dispersed information

- In principal one can overcome dispersion by increasing the control along the channel, by choosing specific hamiltonians or by encoding/decoding the information in a more complicated way
- Idea here: make use of the resources of the receiver to increase the fidelity of the transfer
- In particular, we will use the *memory* and *processor* of the receiving party to gradually store the wave packet and to decode it by a unitary transformation
- Let us start with an arbitrary graph. Later we will come back to the linear chain

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Classical case Quantum case Convergence

Catching the dispersed information

- In principal one can overcome dispersion by increasing the control along the channel, by choosing specific hamiltonians or by encoding/decoding the information in a more complicated way
- Idea here: make use of the resources of the receiver to increase the fidelity of the transfer
- In particular, we will use the *memory* and *processor* of the receiving party to gradually store the wave packet and to decode it by a unitary transformation
- Let us start with an arbitrary graph. Later we will come back to the linear chain

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Classical case Quantum case Convergence

Classical case

• A and B control some regions, and B has a large memory.

・ロト ・ 御 ト ・ 臣 ト ・ 臣 ト ・

Classical case Quantum case Convergence

Classical case

• A encodes { 1, 2, 3 } by flipping as many arrows (Here: "2").

・ロト ・ 御 ト ・ 臣 ト ・ 臣 ト ・

Classical case Quantum case Convergence

Classical case

Some dynamics shuffles the arrows

・ロト ・聞 ト ・ ヨ ト ・ ヨ ト

Classical case Quantum case Convergence

Classical case

Some dynamics shuffles the arrows

・ロト ・ 御 ト ・ 臣 ト ・ 臣 ト ・

Classical case Quantum case Convergence

Classical case

Some dynamics shuffles the arrows

ヘロン 人間 とくほとくほとう

Classical case Quantum case Convergence

Classical case

• After some time, Bob swaps his arrow(s) with the memory

・ロト ・ 御 ト ・ 臣 ト ・ 臣 ト ・

Classical case Quantum case Convergence

Classical case

• After some time, Bob swaps his arrow(s) with the memory

・ロト ・ 御 ト ・ 臣 ト ・ 臣 ト ・

Classical case Quantum case Convergence

Classical case

• After some time, Bob swaps his arrow(s) with the memory

・ロト ・ 御 ト ・ 臣 ト ・ 臣 ト ・

Classical case Quantum case Convergence

Classical case

• Afterwards, the system is shuffled again

<ロ> <四> <四> <日> <日> <日> <日</p>

Classical case Quantum case Convergence

Classical case

Afterwards, the system is shuffled again

<ロ> <四> <四> <日> <日> <日> <日</p>

Classical case Quantum case Convergence

Classical case

• Afterwards, the system is shuffled again

・ロト ・ 御 ト ・ 臣 ト ・ 臣 ト ・

Classical case Quantum case Convergence

Classical case

 Bob performs another swap to new region of his memory. He swaps in any case (no measurement)

Classical case Quantum case Convergence

Classical case

 Bob performs another swap to new region of his memory. He swaps in any case (no measurement)

Classical case Quantum case

_

.

<ロ> <四> <四> <日> <日> <日> <日</p>

з

Classical case

• This strategy is repeated...

Classical case Quantum case

_

<ロ> <四> <四> <日> <日> <日> <日</p>

з

Classical case

• This strategy is repeated...

Classical case Quantum case Convergence

Classical case

• This strategy is repeated...

・ロト ・ 御 ト ・ 臣 ト ・ 臣 ト ・

Classical case Quantum case Convergence

Classical case

• This strategy is repeated...

ヘロン 人間 とくほとくほとう

Classical case Quantum case Convergence

Classical case

• This strategy is repeated...

ヘロン 人間 とくほとくほとう

Classical case Quantum case Convergence

Classical case

 Gradually, all flips leave the system and Bob decodes Alice's message by counting the flips in his memory

Classical case Quantum case Convergence

Classical case

• Further shuffeling has no effect: the system is stationary

・ロト ・ 御 ト ・ 臣 ト ・ 臣 ト ・

Classical case Quantum case Convergence

Classical case

• Further shuffeling has no effect: the system is stationary

・ロト ・ 御 ト ・ 臣 ト ・ 臣 ト ・

Classical case Quantum case Convergence

Quantum case

 The graph consists of qubits with a Hilbert space given by *H*(*A*) ⊗ *H*(*C*) ⊗ *H*(*B*) ⊗ *H*(*M*)

Quantum case

• The "shuffling" is replaced by a coherent unitary dyamics for a fixed time $\boldsymbol{\tau}$

$$U = \exp\left(-iH\tau\right) \tag{1}$$

induced by the Hamiltonian

$$H = \sum J_{kl} (X_k X_l + Y_k Y_l) + \text{diagonal part}$$
(2)

- This Hamiltonian conserves the number of spin flips
- There is no dynamics in the memory
- The swaps are unitary operations *S_j* within the region of Bob's control
- The initial state is

$$|\psi\rangle_A \otimes |0\rangle_B \otimes |0\rangle_C \otimes |0\rangle_M \tag{3}$$

< ロト < 同 ト < 三 ト < 三

where ψ is an arbitrary messag

Quantum case

• The "shuffling" is replaced by a coherent unitary dyamics for a fixed time $\boldsymbol{\tau}$

$$U = \exp\left(-iH\tau\right) \tag{1}$$

induced by the Hamiltonian

$$H = \sum J_{kl} (X_k X_l + Y_k Y_l) + \text{diagonal part}$$
(2)

• This Hamiltonian conserves the number of spin flips

- There is no dynamics in the memory
- The swaps are unitary operations *S_j* within the region of Bob's control
- The initial state is

$$|\psi\rangle_A \otimes |0\rangle_B \otimes |0\rangle_C \otimes |0\rangle_M \tag{3}$$

イロト イポト イヨト イヨト

where ψ is an arbitrary message

Quantum case

• The "shuffling" is replaced by a coherent unitary dyamics for a fixed time $\boldsymbol{\tau}$

$$U = \exp\left(-iH\tau\right) \tag{1}$$

induced by the Hamiltonian

$$H = \sum J_{kl} (X_k X_l + Y_k Y_l) + \text{diagonal part}$$
(2)

- This Hamiltonian conserves the number of spin flips
- There is no dynamics in the memory
- The swaps are unitary operations *S_j* within the region of Bob's control
- The initial state is

$$|\psi\rangle_A \otimes |0\rangle_B \otimes |0\rangle_C \otimes |0\rangle_M \tag{3}$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

where ψ is an arbitrary messag

Quantum case

• The "shuffling" is replaced by a coherent unitary dyamics for a fixed time $\boldsymbol{\tau}$

$$U = \exp\left(-iH\tau\right) \tag{1}$$

induced by the Hamiltonian

$$H = \sum J_{kl} (X_k X_l + Y_k Y_l) + \text{diagonal part}$$
(2)

- This Hamiltonian conserves the number of spin flips
- There is no dynamics in the memory
- The swaps are unitary operations S_j within the region of Bob's control
- The initial state is

$$|\psi\rangle_A \otimes |0\rangle_B \otimes |0\rangle_C \otimes |0\rangle_M$$
 (3)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

where ψ is an arbitrary messag

Quantum case

• The "shuffling" is replaced by a coherent unitary dyamics for a fixed time $\boldsymbol{\tau}$

$$U = \exp\left(-iH\tau\right) \tag{1}$$

induced by the Hamiltonian

$$H = \sum J_{kl} (X_k X_l + Y_k Y_l) + \text{diagonal part}$$
 (2)

- This Hamiltonian conserves the number of spin flips
- There is no dynamics in the memory
- The swaps are unitary operations S_j within the region of Bob's control
- The initial state is

$$|\psi\rangle_A \otimes |0\rangle_B \otimes |0\rangle_C \otimes |0\rangle_M$$
 (3)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

where ψ is an arbitrary message

Protocol

- As in the classical case, Bob performs swaps S_j to his memory at time intervals τ
- The dynamics is described by

$$W_j \equiv S_j U S_{j-1} \cdots S_1 U \tag{4}$$

- W_j tends to decrease the number of excitations in the system A + C + B by swapping them in the memory
- Note that

$$W_j |E\rangle_{A,C} \otimes |0\rangle_B \otimes |0\rangle_M \propto W_j |E\rangle_{A,C} \otimes |0\rangle_B \otimes |0\rangle_M$$
 (5)

for any eigenstate $|E\rangle_{A,C} \otimes |0\rangle_B$ of *H*. Example:

$$M_j |000\rangle_{ACB} \otimes |0\rangle_M = |000\rangle_{ACB} \otimes |0\rangle_M$$
 (6)

< ロ > < 同 > < 回 > < 回 >

Protocol

- As in the classical case, Bob performs swaps S_j to his memory at time intervals τ
- The dynamics is described by

$$W_j \equiv S_j U S_{j-1} \cdots S_1 U \tag{4}$$

- W_j tends to decrease the number of excitations in the system A + C + B by swapping them in the memory
- Note that

$$W_{j}|E\rangle_{A,C} \otimes |0\rangle_{B} \otimes |0\rangle_{M} \propto W_{j}|E\rangle_{A,C} \otimes |0\rangle_{B} \otimes |0\rangle_{M}$$
(5)

for any eigenstate $|E\rangle_{A,C} \otimes |0\rangle_B$ of *H*. Example:

$$\mathcal{N}_{j}|0\,0\,0\rangle_{ACB}\otimes|0\rangle_{M}=|0\,0\,0\rangle_{ACB}\otimes|0\rangle_{M}$$
 (6)

< ロ > < 同 > < 回 > < 回 >

Protocol

- As in the classical case, Bob performs swaps S_j to his memory at time intervals τ
- The dynamics is described by

$$W_j \equiv S_j U S_{j-1} \cdots S_1 U \tag{4}$$

- W_j tends to decrease the number of excitations in the system A + C + B by swapping them in the memory
- Note that

$$W_{j}|E\rangle_{A,C} \otimes |0\rangle_{B} \otimes |0\rangle_{M} \propto W_{j}|E\rangle_{A,C} \otimes |0\rangle_{B} \otimes |0\rangle_{M}$$
(5)

for any eigenstate $|E\rangle_{A,C} \otimes |0\rangle_B$ of *H*. Example:

 $N_j |000\rangle_{ACB} \otimes |0\rangle_M = |000\rangle_{ACB} \otimes |0\rangle_M$ (6)

Protocol

- As in the classical case, Bob performs swaps S_j to his memory at time intervals τ
- The dynamics is described by

$$W_j \equiv S_j U S_{j-1} \cdots S_1 U \tag{4}$$

- W_j tends to decrease the number of excitations in the system A + C + B by swapping them in the memory
- Note that

$$W_j |E\rangle_{A,C} \otimes |0\rangle_B \otimes |0\rangle_M \propto W_j |E\rangle_{A,C} \otimes |0\rangle_B \otimes |0\rangle_M$$
 (5)

for any eigenstate $|E\rangle_{A,C} \otimes |0\rangle_B$ of *H*. Example:

$$W_j |000\rangle_{ACB} \otimes |0\rangle_M = |000\rangle_{ACB} \otimes |0\rangle_M$$
 (6)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Classical case Quantum case Convergence

Convergence theorem

Theorem

If there exists no other eigenstate of the Hamiltonian H of the form

 $|E
angle_{A,C}\otimes|0
angle_{B}$

then

$$\lim_{j\to\infty} W_j |\psi 00\rangle_{ACB} \otimes |0\rangle_M = |000\rangle_{ACB} \otimes |\Phi(\psi)\rangle_M$$

for arbitrary ψ (V. Giovannetti and DB, quant-ph/0508022)

- Note that since W_j is unitary and independent of ψ for all j, there exists a unitary transformation on the memory that Bob can apply to recover the message with perfect fidelity
- If Bob's memory is only finite,one can still improve the fidelity

Classical case Quantum case Convergence

Convergence theorem

Theorem

If there exists no other eigenstate of the Hamiltonian H of the form

 $|E
angle_{A,C}\otimes|0
angle_{B}$

then

$$\lim_{j\to\infty} W_j |\psi 00\rangle_{ACB} \otimes |0\rangle_M = |000\rangle_{ACB} \otimes |\Phi(\psi)\rangle_M$$

for arbitrary ψ

(V. Giovannetti and DB, quant-ph/0508022)

- Note that since W_j is unitary and independent of ψ for all j, there exists a unitary transformation on the memory that Bob can apply to recover the message with perfect fidelity
- If Bob's memory is only finite, one can still improve the fidelity

Classical case Quantum case Convergence

Convergence theorem

Theorem

If there exists no other eigenstate of the Hamiltonian H of the form

 $|E
angle_{A,C}\otimes|0
angle_{B}$

then

$$\lim_{j\to\infty} W_j |\psi 00\rangle_{ACB} \otimes |0\rangle_M = |000\rangle_{ACB} \otimes |\Phi(\psi)\rangle_M$$

for arbitrary ψ

(V. Giovannetti and DB, quant-ph/0508022)

- Note that since W_j is unitary and independent of ψ for all j, there exists a unitary transformation on the memory that Bob can apply to recover the message with perfect fidelity
- If Bob's memory is only finite, one can still improve the fidelity

- Perfect state transfer is possible using a finite Heisenberg spin chain with arbitrary nearest-neighbor couplings
- The regions of A and B can be choosen arbitrarily, but the transfer is more efficient if Alice controls a larger region to send multipartite states
- Anderson localisation is irrelevant since the scheme aims at short chains only. The fingerprint of Anderson localisation for longer chains is a substancial slowdown of the convergence

- Perfect state transfer is possible using a finite Heisenberg spin chain with arbitrary nearest-neighbor couplings
- The regions of A and B can be choosen arbitrarily, but the transfer is more efficient if Alice controls a larger region to send multipartite states
- Anderson localisation is irrelevant since the scheme aims at short chains only. The fingerprint of Anderson localisation for longer chains is a substancial slowdown of the convergence

- Perfect state transfer is possible using a finite Heisenberg spin chain with arbitrary nearest-neighbor couplings
- The regions of A and B can be choosen arbitrarily, but the transfer is more efficient if Alice controls a larger region to send multipartite states
- Anderson localisation is irrelevant since the scheme aims at short chains only. The fingerprint of Anderson localisation for longer chains is a substancial slowdown of the convergence

- Perfect state transfer is possible using a finite Heisenberg spin chain with arbitrary nearest-neighbor couplings
- The regions of A and B can be choosen arbitrarily, but the transfer is more efficient if Alice controls a larger region to send multipartite states
- Anderson localisation is irrelevant since the scheme aims at short chains only. The fingerprint of Anderson localisation for longer chains is a substancial slowdown of the convergence

Conclusion

- Solid state quantum wires of permanently coupled chains are very promising because they require low control
- But usually there is dispersion
- By making use of the resources of the receiving party, one can overcome this
- A randomly coupled Heisenberg chain can be used to transfer arbitrary multipartite quantum states

Conclusion

- Solid state quantum wires of permanently coupled chains are very promising because they require low control
- But usually there is dispersion
- By making use of the resources of the receiving party, one can overcome this
- A randomly coupled Heisenberg chain can be used to transfer arbitrary multipartite quantum states

Conclusion

- Solid state quantum wires of permanently coupled chains are very promising because they require low control
- But usually there is dispersion
- By making use of the resources of the receiving party, one can overcome this
- A randomly coupled Heisenberg chain can be used to transfer arbitrary multipartite quantum states

Conclusion

- Solid state quantum wires of permanently coupled chains are very promising because they require low control
- But usually there is dispersion
- By making use of the resources of the receiving party, one can overcome this
- A randomly coupled Heisenberg chain can be used to transfer arbitrary multipartite quantum states